Skip to main content

MachineLearning API

All URIs are relative to http://localhost:1000

MethodHTTP requestDescription
personification_technical_language_generationPOST /machine_learning/text/technical_language/generators/personification/machine_learning/text/technical_language/generators/personification [GET]
segment_technical_languagePOST /machine_learning/text/technical_language/parsers/segmentation/machine_learning/text/technical_language/parsers/segmentation [POST]

personification_technical_language_generation​

OnboardedPersonaDetails personification_technical_language_generation(preonboarded_persona_details=preonboarded_persona_details)

/machine_learning/text/technical_language/generators/personification [GET]

This is going to take in some personification details ie languages & personas. and will return generated Seeds that can be used as snippets post/pre onboarding.

Example​

import pieces_os_client
from pieces_os_client.models.onboarded_persona_details import OnboardedPersonaDetails
from pieces_os_client.models.preonboarded_persona_details import PreonboardedPersonaDetails
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.MachineLearningApi(api_client)
preonboarded_persona_details = pieces_os_client.PreonboardedPersonaDetails() # PreonboardedPersonaDetails | (optional)

try:
# /machine_learning/text/technical_language/generators/personification [GET]
api_response = api_instance.personification_technical_language_generation(preonboarded_persona_details=preonboarded_persona_details)
print("The response of MachineLearningApi->personification_technical_language_generation:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MachineLearningApi->personification_technical_language_generation: %s\n" % e)

Parameters​

NameTypeDescriptionNotes
preonboarded_persona_detailsPreonboardedPersonaDetails[optional]

Return type​

OnboardedPersonaDetails

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: application/json
  • Accept: application/json, text/plain

HTTP response details​

Status codeDescriptionResponse headers
200OK-
500Internal Server Error-

segment_technical_language​

SegmentedTechnicalLanguage segment_technical_language(classify=classify, unsegmented_technical_language=unsegmented_technical_language)

/machine_learning/text/technical_language/parsers/segmentation [POST]

This is a functional endpoint that will parse a message or text in to text or code. if the optional query param is passed along 'classify' then we will optionally classify the just the code that is segmented.

Example​

import pieces_os_client
from pieces_os_client.models.segmented_technical_language import SegmentedTechnicalLanguage
from pieces_os_client.models.unsegmented_technical_language import UnsegmentedTechnicalLanguage
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.MachineLearningApi(api_client)
classify = True # bool | This will let us know if you want us to classifiy your code, this is default to false. (optional)
unsegmented_technical_language = pieces_os_client.UnsegmentedTechnicalLanguage() # UnsegmentedTechnicalLanguage | (optional)

try:
# /machine_learning/text/technical_language/parsers/segmentation [POST]
api_response = api_instance.segment_technical_language(classify=classify, unsegmented_technical_language=unsegmented_technical_language)
print("The response of MachineLearningApi->segment_technical_language:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MachineLearningApi->segment_technical_language: %s\n" % e)

Parameters​

NameTypeDescriptionNotes
classifyboolThis will let us know if you want us to classifiy your code, this is default to false.[optional]
unsegmented_technical_languageUnsegmentedTechnicalLanguage[optional]

Return type​

SegmentedTechnicalLanguage

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: application/json
  • Accept: application/json, text/plain

HTTP response details​

Status codeDescriptionResponse headers
200OK-
500Internal Server Error-