Skip to main content

WorkstreamPatternEngine API

All URIs are relative to http://localhost:1000

MethodHTTP requestDescription
workstream_pattern_engine_processors_vision_activatePOST /workstream_pattern_engine/processors/vision/activate/workstream_pattern_engine/processors/vision/activate [POST]
workstream_pattern_engine_processors_vision_data_clearPOST /workstream_pattern_engine/processors/vision/data/clear/workstream_pattern_engine/processors/vision/data/clear [POST]
workstream_pattern_engine_processors_vision_deactivatePOST /workstream_pattern_engine/processors/vision/deactivate/workstream_pattern_engine/processors/vision/deactivate [POST]
workstream_pattern_engine_processors_vision_statusGET /workstream_pattern_engine/processors/vision/status/workstream_pattern_engine/processors/vision/status [GET]

workstream_pattern_engine_processors_vision_activate​

WorkstreamPatternEngineStatus workstream_pattern_engine_processors_vision_activate(workstream_pattern_engine_status=workstream_pattern_engine_status)

/workstream_pattern_engine/processors/vision/activate [POST]

This will activate your Long-Term Memory Engine. This is used to aggregate information on your user's desktop, specifically recording the application in focus and aggregating relevant context that will then be used to ground the copilot conversations, as well as the feed. Note: required to be a beta user to use this feature until this is live(roughly mid to late April)

Example​

import pieces_os_client
from pieces_os_client.models.workstream_pattern_engine_status import WorkstreamPatternEngineStatus
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.WorkstreamPatternEngineApi(api_client)
workstream_pattern_engine_status = pieces_os_client.WorkstreamPatternEngineStatus() # WorkstreamPatternEngineStatus | (optional)

try:
# /workstream_pattern_engine/processors/vision/activate [POST]
api_response = api_instance.workstream_pattern_engine_processors_vision_activate(workstream_pattern_engine_status=workstream_pattern_engine_status)
print("The response of WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_activate:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_activate: %s\n" % e)

Parameters​

NameTypeDescriptionNotes
workstream_pattern_engine_statusWorkstreamPatternEngineStatus[optional]

Return type​

WorkstreamPatternEngineStatus

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: application/json
  • Accept: application/json, text/plain

HTTP response details​

Status codeDescriptionResponse headers
200OK-
403Forbidden, this is not available for non-beta used until mid to late April.-
500Internal Server Error-

workstream_pattern_engine_processors_vision_data_clear​

workstream_pattern_engine_processors_vision_data_clear(workstream_pattern_engine_data_cleanup_request=workstream_pattern_engine_data_cleanup_request)

/workstream_pattern_engine/processors/vision/data/clear [POST]

This will clear the data for the Long-Term Memory Engine, specifically for our vision data. This boy will accept ranges of time that the user wants to remove the processing from.

Example​

import pieces_os_client
from pieces_os_client.models.workstream_pattern_engine_data_cleanup_request import WorkstreamPatternEngineDataCleanupRequest
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.WorkstreamPatternEngineApi(api_client)
workstream_pattern_engine_data_cleanup_request = pieces_os_client.WorkstreamPatternEngineDataCleanupRequest() # WorkstreamPatternEngineDataCleanupRequest | (optional)

try:
# /workstream_pattern_engine/processors/vision/data/clear [POST]
api_instance.workstream_pattern_engine_processors_vision_data_clear(workstream_pattern_engine_data_cleanup_request=workstream_pattern_engine_data_cleanup_request)
except Exception as e:
print("Exception when calling WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_data_clear: %s\n" % e)

Parameters​

NameTypeDescriptionNotes
workstream_pattern_engine_data_cleanup_requestWorkstreamPatternEngineDataCleanupRequest[optional]

Return type​

void (empty response body)

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: application/json
  • Accept: text/plain

HTTP response details​

Status codeDescriptionResponse headers
204No Content-
403Forbidden, this is not available for non-beta used until mid to late April.-
500Internal Server Error-

workstream_pattern_engine_processors_vision_deactivate​

WorkstreamPatternEngineStatus workstream_pattern_engine_processors_vision_deactivate(workstream_pattern_engine_status=workstream_pattern_engine_status)

/workstream_pattern_engine/processors/vision/deactivate [POST]

This will deactivate your Long-Term Memory Engine. This is used to aggregate information on your user's desktop, specifically recording the application in focus and aggregating relevant context that will then be used to ground the copilot conversations, as well as the feed. Note: required to be a beta user to use this feature until this is live(roughly mid to late April)

Example​

import pieces_os_client
from pieces_os_client.models.workstream_pattern_engine_status import WorkstreamPatternEngineStatus
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.WorkstreamPatternEngineApi(api_client)
workstream_pattern_engine_status = pieces_os_client.WorkstreamPatternEngineStatus() # WorkstreamPatternEngineStatus | (optional)

try:
# /workstream_pattern_engine/processors/vision/deactivate [POST]
api_response = api_instance.workstream_pattern_engine_processors_vision_deactivate(workstream_pattern_engine_status=workstream_pattern_engine_status)
print("The response of WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_deactivate:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_deactivate: %s\n" % e)

Parameters​

NameTypeDescriptionNotes
workstream_pattern_engine_statusWorkstreamPatternEngineStatus[optional]

Return type​

WorkstreamPatternEngineStatus

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: application/json
  • Accept: application/json, text/plain

HTTP response details​

Status codeDescriptionResponse headers
200OK-
403Forbidden, this is not available for non-beta used until mid to late April.-
500Internal Server Error-

workstream_pattern_engine_processors_vision_status​

WorkstreamPatternEngineStatus workstream_pattern_engine_processors_vision_status()

/workstream_pattern_engine/processors/vision/status [GET]

This will get a snapshot of the status your Long-Term Memory Engine. This is used to aggregate information on your user's desktop, specifically recording the application in focus and aggregating relevant context that will then be used to ground the copilot conversations, as well as the feed. Note: required to be a beta user to use this feature until this is live(roughly mid to late April)

Example​

import pieces_os_client
from pieces_os_client.models.workstream_pattern_engine_status import WorkstreamPatternEngineStatus
from pieces_os_client.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to http://localhost:1000
# See configuration.py for a list of all supported configuration parameters.
configuration = pieces_os_client.Configuration(
host="http://localhost:1000"
)


# Enter a context with an instance of the API client
with pieces_os_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = pieces_os_client.WorkstreamPatternEngineApi(api_client)

try:
# /workstream_pattern_engine/processors/vision/status [GET]
api_response = api_instance.workstream_pattern_engine_processors_vision_status()
print("The response of WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_status:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling WorkstreamPatternEngineApi->workstream_pattern_engine_processors_vision_status: %s\n" % e)

Parameters​

This endpoint does not need any parameters.

Return type​

WorkstreamPatternEngineStatus

Authorization​

No authorization required

HTTP request headers​

  • Content-Type: Not defined
  • Accept: application/json, text/plain

HTTP response details​

Status codeDescriptionResponse headers
200OK-
403Forbidden, this is not available for non-beta used until mid to late April.-
500Internal Server Error-